

Journal of Organometallic Chemistry 493 (1995) 229-237

Reactions of the alkylidyne cluster $[Os_{3}(\mu-H)_{2}(CO)_{9}(\mu_{3}-CNC_{5}H_{4}-CH=CH_{2})].$ Crystal structures of $[Os_{3}(\mu-H)_{2}(CO)_{9}(\mu_{3}-CNC_{5}H_{4}-CH=CH_{2})],$ $[Os_{3}(\mu-H)_{2}(CO)_{9}(\mu_{3}-CNC_{5}H_{4}-\mu-\eta^{2}-CH=CH)Os_{3}(\mu-H)(CO)_{10}]$ and $[Os_{3}(\mu-H)_{2}(CO)_{9}(\mu_{3}-CNC_{5}H_{4}-C(O)CH_{3})]$

Wai-Yeung Wong, Suzanna Chan, Wing-Tak Wong *

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Received 31 October 1994

Abstract

The neutral triosmium alkylidyne cluster $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1) has been made in good yield by the reaction of $[Os_3(\mu-H)_3(CO)_9(\mu_3-CCl)]$ with one equivalent of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in the presence of an excess of 4-vinylpyridine. The reaction of 1 with $[Os_3(CO)_{10}(NCMe)_2]$ in refluxing *n*-hexane affords the linked cluster $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-\mu-\eta^2-CH=CH)Os_3(\mu-H)(CO)_{10}]$ (2) in moderate yield, while the Wacker-type reaction of 1 with a trace amount of water in the presence of Wilkinson's catalyst RhCl(PPh_3)_3 in refluxing dichloromethane yields the 4-acetylpyridine derivative of the corresponding alkylidyne cluster $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-C(O)CH_3)]$ (3). The structures of compounds 1–3 have been determined by single crystal X-ray diffraction studies. The structure of 1 involves a triosmium alkylidyne metal core with the 4-vinylpyridine moiety bonded to the μ_3 -bridging alkylidyne carbon atom. In the case of 2 the triosmium alkylidyne metal core with the 4-acetylpyridine ligand attached to the apical carbon atom. The M.L.C.T. transitions of all three complexes show strong solvent dependency, displaying unusually large negative solvatochromism in a wide range of organic solvents. This suggests that a less polar excited state is produced by photoexcitation.

Keywords: Osmium; Carbonyl; Cluster; Alkylidyne; Solvatochromism; Crystal structure

1. Introduction

Various pyridines [1] and alkenes [2] have been shown to be good monodentate ligands in triosmium cluster chemistry. Possessing two functional centres, 4-vinylpyridine has the potential of acting as a linking group between cluster units and facilitating cluster build-up. The isolation of the 4-vinylpyridine-substituted triosmium alkylidyne carbonyl cluster has recently been reported [3]. This metal cluster complex can serve as a ligand and bond to another cluster fragment to form a new homonuclear or heteronuclear linked species. Such compounds are thought to be good intermediates in the synthesis of high-nuclearity cluster complexes.

Current interest in the hydroformylation of olefins via rhodium catalysts [4] prompted us also to investigate the possible reaction of 1 with water and oxygen in the presence of Wilkinson's catalyst at atmospheric pressure under mild conditions. Preliminary results reveal a Wacker-type oxidation of the vinyl group in 1 to yield the corresponding acetyl group.

2. Results and discussion

The reaction of $[Os_3(\mu-H)_3(CO)_9(\mu_3-CCI)]$ with one equivalent of DBU in dichloromethane in the presence of a ten-fold excess of 4-vinylpyridine at room tempera-

[•] Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05332-4

Table 1 ${}^{13}C{}^{1}H$ NMR data for the cluster 1 and the ligand 4-vinylpyridine, δ (ppm) ^a

4-vinylpyridine	
150.2 (s, 2C ₅)	
144.8 (s, C ₃)	
$134.8(s, C_2)$	
$120.8 (s, 2C_4)$	
$118.6(s, C_1)$	
	$\frac{4 \text{-vinylpyridine}}{150.2 (s, 2C_5)}$ $144.8 (s, C_3)$ $134.8 (s, C_2)$ $120.8 (s, 2C_4)$ $118.6 (s, C_1)$

 a CD₂Cl₂.

ture gives the red crystalline compound $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1) (ca. 69% yield). Complex 1 has been fully characterised by spectroscopic methods [3]. The ¹³C{¹H} NMR data at room temperature for 1 and the free ligand [5] are given in Table 1, and Fig. 1 shows the numbering schemes used. A broad resonance (at ca. δ 148.4), attributable to the nine carbonyl ligands, was observed at room temperature, and is attributable to the rapid intramolecular scrambling of the carbonyl ligands [6,7]. Furthermore, the methylidyne carbon shows an upfield resonance at δ 30.1 in CD₂Cl₂. This shift is similar to that reported for the compound $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_5)]$ [8], and may be taken as an indication of the electron richness of the "Os₃C" core in 1.

Single crystals of 1 suitable for diffraction studies were grown by evaporation of a *n*-hexane/CH₂Cl₂ solution of 1 during 2 days at room temperature. The molecular structure of 1 together with its atom labelling scheme is shown in Fig. 2, and selected bond distances and bond angles are listed in Table 2. The structure of 1 involves a triosmium alkylidyne metal core with the 4-vinylpyridine bonded to the apical carbon atom. The Os-C (alkylidyne) bond lengths are essentially equivalent. The resonance at $\delta - 18.96$ in the ¹H NMR spectrum of 1 shows the presence of

Fig. 1. The labelling schemes used for the assignments of ${}^{13}C{}^{1}H$ NMR spectra of 1 and the free ligand.

Fig. 2. The molecular structure of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1).

metal hydrides [3]. Potential energy calculations suggested that one hydride atom bridges the Os(1)–Os(2) edge and the other the Os(2)–Os(3) edge [9]. These two edges (average 2.868 Å) are significantly longer than the Os(1)–Os(3) bond [2.758(1) Å]. The vinyl fragment C(7)–C(8) is two-fold disordered about the C(4)–C(7) axis with C(7)–C(8) = 1.40(10) Å and C(7)– C(8A) = 1.38(8) Å. [C(8A) is the alternative position of C(8)]. The bond C(4)–C(7) is a single bond [1.52(5) Å], and the angle C(4)–C(7)–C(8) is 121(5)° [10]. The other distances are comparable to those found in other systems [11].

Treatment of the cluster 1 with a slight excess of the activated triosmium cluster $[Os_3(CO)_{10}(NCMe)_2]$ in refluxing *n*-hexane for 8 h produces a homonuclear-linked cluster $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-\mu-\eta^2-CH=$

Table 2 Selected bond distances (Å) and bond angles (°) for $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1)

$\overline{Os(1)-Os(2)}$	2.861(1)	Os(1) - Os(3)	2.758(1)
Os(2)-Os(3)	2.874(2)	Os(1) - C(1)	2.10(2)
Os(2)-C(1)	2.09(2)	Os(3) - C(1)	2.06(2)
N(1)-C(1)	1.48(3)	C(4)-C(7)	1.52(5)
C(7)-C(8)	1.40(10)		
Os(2) - Os(1) - Os(3)	61.48(4)	Os(1)-Os(2)-Os(3)	57.49(3)
Os(1)-Os(3)-Os(2)	61.03(4)	Os(1)-C(1)-Os(2)	85.9(9)
Os(1) - C(1) - Os(3)	83.3(8)	Os(2)-C(1)-Os(3)	87.8(8)
C(1)-N(1)-C(2)	119(2)	C(1)-N(1)-C(6)	119(2)
C(4)-C(7)-C(8)	121(5)		

spectrum, which shows the molecular ion at 1793 (simulated m/z = 1793). It is worth noting that the IR spectrum of 2 in the range $2150-1800 \text{ cm}^{-1}$ appears to be a simple combination of that found for the constituent species, namely, $[Os_3(\mu-H)_2(CO)_9(\mu_3 CNC_5H_4$ -CH=CH₂) [3] and $[Os_3(\mu-H)(CH=CHR)$ $(CO)_{10}$] (R = H, Me, Ph) [12]. In addition, the ¹H NMR spectrum of 2 shows features common to both species. The spectroscopic data for 2, presented in Table 3, are consistent with the solid-state structure. The vinyl group in 2 is on a bridging mode because the spread of chemical shifts in its ¹H NMR spectrum is larger than that expected for a simple σ -bonded C_2H_2R group [13], and resembles that of a C_2H_2R group with a σ -bond to one metal atom and a monoalkene-metal interaction to another metal atom [14]. An X-ray structure determination of 2 was carried out on a single crystal obtained by evaporation of a solution of 2 in *n*-hexane/CH₂Cl₂ during 2 days at room temperature. The molecular structure of 2 together with the atom labelling scheme, is depicted in Fig. 3, and some important bond distances and bond angles are presented in Table 4. The structure of 2 involves a triosmium alkylidyne metal core, with the

Table 3

Spectroscopic data for compounds 2 and 3

Compound	IR $(\nu_{\rm CO})({\rm cm}^{-1})$ a	¹ H NMR, δ (ppm) ^b	MS
2 He He He He He He He He	2109m, 2089m, 2066s, 2056s, 2025vs, 1983s, 1951m, 1935m	9.58 [d, 2H, J(HaHb) = 6.9 Hz, Ha] 8.32 [dd, 1H, J(HcHd) = 13.9 Hz, J(HcHf) = 2.0 Hz, Hc] 7.19 [d, 2H, J(HbHa) = 6.9 Hz, Hb] 4.92 [d, 1H, J(HdHc) = 13.9 Hz, Hd] - 18.60 [d, 1H, J(HfHc) = 2.0 Hz, Hf] - 18.92 [s, 2H, He]	1793 (1793) ^c
$ \begin{array}{c} Me \\ 0 \\ b \\ a \\ N \\ a \\ C \\ H \\ Os \\ Os \\ H \\ Os \\ Os \\ Os \\ H \\ Os \\ Os \\ H \\ Os \\ Os \\ Os \\ H \\ Os \\ Os \\ Os \\ H \\ Os \\ H \\ Os \\ H \\ Os \\ Os \\ H \\ H \\ Os \\ H \\ H \\ H$	2091m, 2057vs, 2026vs, 1985s, 1953m, 1937m, 1705m,br	9.82 [d, 2H, J(HaHb) = 7.1 Hz, Ha] 7.79 [d, 2H, J(HbHa) = 7.1 Hz, Hb] 2.66 [s, 3H, Me] - 18.78 [s, 2H, OsH]	963 (963) ^d

^a CH₂Cl₂, ^b CD₂Cl₂, ^c Simulated value, ^d Based on ¹⁹²Os.

Fig. 3. The molecular structure of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-\mu-\eta^2-CH=CH_2)] Os_3(\mu-H)_2(CO)_{10}$ (2).

than the 1.34 Å expected for a C-C double bond. A similar bridging situation [15-18] has been encountered in $[Os_3(\mu-H)(CH=CH_2)(CO)_{10}]$ and its μ -but-1-enyl analogue [19], for the former of which combined X-ray and neutron diffraction studies were carried out [20].

The reaction of 1 with traces of water in the air using stoichiometric amounts of RhCl(PPh₃)₃ as catalyst leads to direct formation of an acyl alkylidyne cluster $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-C(O)CH_3)]$ (3) (ca. 29% yield). Compound 3 was characterised by

Table 4

Selected bond distances (Å) and bond angles (°) for $[Os_3(\mu-H)cO)_0(\mu_2-CNC_0H_1-\mu_2-CH=CH)Os_0(\mu_2-H)(CO)_{10}]$ (2)

2.8780(7)	Os(1) - Os(3)	2.7564(7)
2.8858(7)	Os(4) - Os(5)	2.9008(7)
2.8467(7)	Os(5) - Os(6)	2.8714(7)
2.06(1)	Os(2) - C(1)	2.10(1)
2.08(2)	N(1)-C(1)	1.49(1)
1.51(2)	C(7)–C(8)	1.40(2)
2.38(1)	Os(4)-C(8)	2.29(1)
2.11(1)		
61.57(2)	Os(1)-Os(2)-Os(3)	57.14(2)
61.29(2)	Os(5)-Os(4)-Os(6)	59.94(2)
59.10(2)	Os(4)-Os(6)-Os(5)	60.97(2)
87.5(5)	Os(1)-C(1)-Os(3)	83.5(4)
87.3(5)	C(1)-N(1)-C(2)	121(1)
119.1(9)	C(4)-C(7)-C(8)	123(1)
122.0(9)	Os(4) - Os(6) - C(8)	52.6(4)
76.3(8)	Os(4) - C(7) - C(8)	69.1(8)
80.4(5)		
	2.8780(7) 2.8858(7) 2.8467(7) 2.06(1) 2.08(2) 1.51(2) 2.38(1) 2.11(1) 61.57(2) 61.29(2) 59.10(2) 87.5(5) 87.3(5) 119.1(9) 122.0(9) 76.3(8) 80.4(5)	$\begin{array}{c} 2.8780(7) & Os(1)-Os(3) \\ 2.8780(7) & Os(4)-Os(5) \\ 2.8858(7) & Os(4)-Os(5) \\ 2.8858(7) & Os(4)-Os(5) \\ 2.8467(7) & Os(5)-Os(6) \\ 2.06(1) & Os(2)-C(1) \\ 2.08(2) & N(1)-C(1) \\ 1.51(2) & C(7)-C(8) \\ 2.38(1) & Os(4)-C(8) \\ 2.11(1) \\ 61.57(2) & Os(1)-Os(2)-Os(3) \\ 61.29(2) & Os(5)-Os(4)-Os(6) \\ 59.10(2) & Os(5)-Os(4)-Os(6) \\ 59.10(2) & Os(4)-Os(6)-Os(5) \\ 87.5(5) & Os(1)-C(1)-Os(3) \\ 87.3(5) & C(1)-N(1)-C(2) \\ 119.1(9) & C(4)-C(7)-C(8) \\ 122.0(9) & Os(4)-Os(6)-C(8) \\ 76.3(8) & Os(4)-C(7)-C(8) \\ 80.4(5) \\ \end{array}$

spectroscopic methods (Table 3). A broad IR absorption band at 1705 cm^{-1} indicates the presence of an acyl group [21], while the pattern of IR bands in the range 2150-1800 cm⁻¹ is analogous to that of the related clusters $[Os_3(\mu-H)_2(CO)_q(\mu_3-CY)]$ (Y = Lewis base) [11]. Disappearance of the resonances from the vinyl group were observed in the ¹H NMR spectrum of 3. Two sets of doublets and a strong methyl singlet from the acetyl group were observed. The signal at δ -18.78 indicates the presence of metal hydrides. Further confirmation of the presence of an acyl group comes from the mass spectrum of 3. A molecular ion peak at 963 is observed in the FAB mass spectrum of 3; it differs by 16 amu from that for 1. It is likely that one oxygen atom is inserted into the vinyl group, with a corresponding hydrogen shift to give the methyl group. The reaction probably proceeds in an analogous manner to the Wacker process, and a detailed mechanistic study is under way. The formation of 3 from 1 involves the conversion of an alkene group into an acyl group, and this represents a versatile method for systematic functionalization of alkylidyne substituents on the trinuclear metal surface.

11(3)

Table 5			
Selected bond distances (Å) and bond angles (°) fo	or $[Os_3(\mu - H)_2(CO)_9(\mu$	$_{3}$ -CNC ₅ H ₄ -C(O)CH ₃

······	molecule 1	molecule 2		molecule 1	molecule 2
Os(1)-Os(2)	2.864(1)	2.879(1)	Os(1)-Os(3)	2.873(1)	2.871(2)
Os(2) - Os(3)	2.766(2)	2.759(2)	Os(1)-C(1)	2.20(2)	2.02(2)
Os(2) - C(1)	2.02(3)	2.15(2)	Os(3)–C(1)	2.10(3)	2.05(2)
N(1)-C(1)	1.44(3)	1.44(3)	C(2)-C(73)	1.54(4)	1.54(4)
O(1)-C(2)	1.21(4)	1.17(3)	C(2)-C(3)	1.46(4)	1.48(4)
	molecule 1	molecule 2		molecule 1	molecule 2
Os(2) - Os(1) - Os(3)	57.64(4)	57.36(3)	Os(1)-Os(2)-Os(3)	61.34(4)	61.17(4)
Os(1) - Os(3) - Os(2)	61.02(4)	61.47(3)	Os(1)-C(1)-Os(2)	85.4(9)	87.3(9)
Os(1) - C(1) - Os(3)	83.9(9)	89.7(10)	Os(2) - C(1) - Os(3)	84.2(10)	82.2(9)
C(1) - N(1) - C(75)	121(2)	122(2)	C(1)-N(1)-C(71)	123(2)	121(2)
O(1)-C(2)-C(73)	117(2)	120(2)	O(1)-C(2)-C(3)	123(3)	126(3)

Fig. 4.The molecular structure of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-C(O)CH_3)]$ (3).

The molecular geometry of **3** was established by an X-ray diffraction study on a crystal obtained by evaporation of a solution of **3** in *n*-hexane/ CH_2Cl_2 during 3 day at room temperature. A perspective view of the molecular structure of **3** together with the atom labelling scheme is depicted in Fig. 4, and some important bond distances and bond angles are listed in Table 5. There are two independent molecules in the asymmetric unit of **3**, and the structure of **3** also involves a triosmium alkylidyne metal core, with the 4-acetyl-pyridine bonded to the apical carbon C(1). Potential energy calculations revealed that the two hydrides sep-

Fig. 5. The zwitterionic formulation for 1-3.

arately bridge the Os(1)–Os(2) and Os(1)–Os(3) edges [Os(1)–Os(2) = 2.864(1) Å and Os(1)–Os(3) = 2.873(1) Å]. The O(1)–C(2) distance [1.21(4) Å] is typical of an acyl C=O group, and the angles O(1)–C(2)–C(73) and O(1)–C(2)–C(3) are close to $120^{\circ} [117(2)^{\circ} \text{ and } 123(3)^{\circ}, \text{ respectively}]$.

All three complexes can best be described by a charge-separated zwitterionic formulation, analogous to that for N-alkylated heterocycles, and hence may be represented as shown in Fig. 5. IR spectroscopy offers an ideal method for confirming this charge separation. The solution IR spectra of 1–3 show unusually low carbonyl-stretching frequencies for neutral clusters. The observation that protonation by CF₃COOH or HBF₄ preferentially occurs at the metal framework rather than at the organic fragment offers further evidence for the electron-withdrawing nature of the "Os₃C" core. As mentioned before, the upfield ¹³C resonance for the methylidyne carbon in 1 suggests an excess of electron density within the inorganic moiety.

The deep colour in the solid state displayed by 1-3 prompted us to examine them by optical spectroscopy. Fenske-Hall molecular orbital calculations on these

Fig. 6. The UV/VIS spectra of 1 and 3 in CH_2Cl_2 .

Table 6 Optical spectral parameters for the compounds 1-3

	Solvent	Colour	λ _{max} (nm)	$10^{-3}\varepsilon$ (dm ³ mol ⁻¹ cm ⁻¹)
1	n-hexane	violet	570	4.8
	carbon tetrachloride	purple	561	4.1
	dichloromethane	red	520	4.3
	acetone	orange	492	4.3
2 ^a	carbon tetrachloride	blue	601	6.1
	dichloromethane	purple	558	5.7
	acetone	orange	491	6.9
3	n-hexane	green	637	4.2
	carbon tetrachloride	green	627	6.2
	dichloromethane	blue	590	5.1
	acetone	red	537	4.0

^a Limited solubility in *n*-hexane.

compounds revealed that the highest occupied molecular orbital (HOMO) is largely metal-based, and the lowest unoccupied molecular orbital (LUMO) mostly based on the organic moiety [22]. The intense colour

Table 7

Crystal data and data collection parameters for 1-3

arises from a strong absorption because of a metal-toligand charge-transfer (M.L.C.T.) transition. The study of complexes 1-3 in a variety of organic solvents by UV/VIS spectroscopy showed that they exhibit exceptionally large negative solvatochromism (hypsochromic shift) which extends over almost the whole visible range. That is, the M.L.C.T. absorption blue shifts in progressively more polar solvent media, $(\mu_g > \mu_e)$, where μ_g and μ_e are the dipole moments in the ground state and the excited state, respectively [23]. This behaviour is in direct contrast to the positive solvatochromism shown by bithiophene [24]. The optical spectral data for 1-3in a range of solvents are summarised in Table 6. One important feature is that a large difference in λ max for 1 and 3 in the same solvent was observed (Fig. 6). The electron-withdrawing ability of the COMe group in 3 substantially reduces the dipole moment of 3 in the ground state and this hence results in a lower transition energy (longer λ max). The observation of such solvatochromic behaviour for these complexes may provide a good opportunity for the development of new

Compound	1	2	3
Formula	OS ₂ C ₁₇ H ₀ NO ₀	Os ₆ C ₂₇ H ₉ NO ₁₉	$Os_3C_{17}H_9NO_{10}$
Formula weight	941.6	1792.2	957.6
Colour habit	Red blocks	Purple rods	Red plates
Crystal dimensions (mm)	$0.20 \times 0.32 \times 0.40$	0.18 imes 0.20 imes 0.38	0.04 imes 0.16 imes 0.28
Crystal system	Orthorhombic	Triclinic	Monoclinic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)	$P\overline{1}$ (No. 2)	<i>P</i> 2 ₁ (No. 4)
a (Å)	11.017(4)	11.872(2)	8.517(1)
b (Å)	11.048(6)	12.460(4)	23.448(2)
$c(\mathbf{A})$	17.862(9)	12.696(5)	11.055(2)
α (°)	90.0	95.21(3)	90.0
ß (°)	90.0	96.97(2)	91.38(2)
γ (°)	90.0	92.73(2)	90.0
$V(Å^3)$	2173(2)	1853(2)	2207.2(5)
7.	4	2	4
$D_{\rm rel} ({\rm g}{\rm cm}^{-3})$	2.878	3.212	2.881
μ (Mo K α) (cm ⁻¹)	175.72	205.99	173.05
F(000)	1672	1572	1704
Temperature (K)	296	296	298
Scan type	$\omega - 2\theta$	$\omega - 2\theta$	$\omega - 2\theta$
Scan rate in ω (deg min ⁻¹)	1.24-8.24	1.24-8.24	16.0
Scan range (°)	$0.60 + 0.34 \tan \theta$	$0.45 + 0.34 \tan \theta$	$1.10 + 0.35 \tan \theta$
2θ range (°)	2-45	2-45	2-45
Reflections collected	1667	5123	3201
Unique reflections	1667	4555	2976
Observed reflections	1466 $(n = 3)$	4167 (n = 3)	2651 (n = 6)
$[F > n\sigma(F)]$			
Absorption correction	Psi-scans	Psi-scans	Psi-scans
Transmission factors	0.635-0.991	0.353-0.999	0.4434-1.0000
Weighting scheme $u = [\pi^2(F^2) + \pi F^2]^{-1}$	g = 0.04	g = 0.04	g = 0.005
$\boldsymbol{\omega} = \left[\boldsymbol{\upsilon} (\boldsymbol{\Gamma} \boldsymbol{J} \perp \boldsymbol{g} \boldsymbol{\Gamma} \boldsymbol{J} \right]$	0.041	0.035	0.032
D	0.053	0.048	0.035
Residual electron density	1.31 to -1.41	1.20 to -1.35	1.20 to -0.78
(e Å ⁻³) (close to Os)			

materials for non-linear optics, and a good system for solvent polarity correlation [25,26].

3. Experimental details

3.1. Materials and methods

None of the compounds reported is particularly air sensitive, but all reactions were carried out under dry dinitrogen using standard Schlenk and vacuum line techniques. Dichloromethane was dried over CaH₂ and *n*-hexane was distilled from sodium benzophenone ketyl. Chemicals, except where stated, were purchased from commercial sources and used as received. The compounds $[Os_3(\mu-H)_3(CO)_9(\mu_3-CCl)]$ [27] and $[Os_3(CO)_{10}(NCMe)_2]$ [28] were prepared by published

Table 8

Atomic coordinates and isotropic displacement coefficients B_{eq} (Å²) for $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1)

Atom	x	У	z	B _{eq}
Os1	0.45843(8)	0.10654(8)	0.01364(6)	3.18(2)
Os2	0.5186(1)	-0.14538(9)	0.01123(6)	3.58(2)
Os3	0.3620(1)	-0.4166(9)	0.12275(6)	4.08(2)
O 11	0.215(2)	0.140(2)	-0.074(1)	6.5(5) *
O12	0.643(2)	0.212(2)	-0.091(1)	5.6(4) *
O13	0.440(2)	0.333(2)	0.110(1)	6.1(5) *
O21	0.395(2)	-0.296(2)	-0.108(1)	7.4(6) *
O22	0.613(3)	-0.360(2)	0.105(1)	9.6(7) *
O23	0.757(2)	-0.107(2)	-0.069(1)	7.9(6) *
O31	0.097(2)	-0.015(2)	0.069(1)	7.3(5) *
O32	0.351(3)	-0.240(3)	0.236(2)	11.5(9) *
O33	0.337(2)	0.161(2)	0.234(1)	8.3(6) *
N 1	0.650(2)	0.008(2)	0.138(1)	3.2(4) *
C1	0.539(2)	-0.010(2)	0.092(1)	2.9(4) *
C2	0.658(2)	-0.047(2)	0.207(2)	4.7(6) *
C3	0.765(3)	-0.035(3)	0.247(2)	6.9(9) *
C4	0.864(3)	0.032(2)	0.219(2)	5.1(6) *
C5	0.850(3)	0.087(3)	0.152(2)	5.4(6) *
C6	0.738(2)	0.074(2)	0.112(1)	4.3(5) *
C7	0.984(3)	0.041(3)	0.261(2)	7.4(9) *
C11	0.311(2)	0.130(2)	-0.042(1)	4.2(5) *
C12	0.576(2)	0.172(2)	-0.051(1)	3.8(5) *
C13	0.444(2)	0.249(2)	0.073(2)	4.4(6) *
C21	0.444(3)	-0.242(3)	-0.063(2)	6.1(7) *
C22	0.572(3)	-0.271(3)	0.068(2)	6.8(8) *
C23	0.666(2)	-0.128(2)	-0.038(2)	4.6(6) *
C31	0.198(3)	-0.030(3)	0.092(2)	5.2(6) *
C32	0.362(3)	-0.159(3)	0.196(2)	7.0(8) *
C33	0.349(3)	0.078(3)	0.192(2)	5.2(6) *
C8	1.021(8)	-0.050(8)	0.309(5)	11(3) *
C8A	1.069(7)	0.132(7)	0.256(4)	9(2) *

Starred atoms were refined isotropically.

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as:

 $\begin{array}{l} (4/3)*[a^2*B(1,1)+b^2*B(2,2)+c^2*B(3,3)+ab(\cos\gamma)*B(1,2)\\ +ac(\cos\beta)*B(1,3)+bc(\cos\alpha)*B(2,3)]. \end{array}$

Table 9

Atomic coordinates and isotropic displacement coefficients B_{eq} (Å²) for $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-\mu-\eta^2-CH=CH)Os_3(\mu-H)(CO)_{10}]$ (2)

(2)				
Atom	x	У	z	B _{eq}
Os1	0.19394(4)	0.15691(4)	0.30291(4)	2.43(1)
Os2	0.33869(4)	- 0.00672(4)	0.23253(4)	2.53(1)
Os3	0.28739(4)	0.02527(4)	0.44921(4)	2.43(1)
Os4	-0.28144(4)	-0.40738(4)	0.24397(4)	2.50(1)
Os5	-0.23353(5)	- 0.62974(4)	0.27261(4)	2.79(1)
Os6	- 0.28319(5)	-0.56062(4)	0.06316(4)	2.70(1)
O11	- 0.0162(9)	0.1881(9)	0.4119(8)	4.5(2) *
O12	0.312(1)	0.375(1)	0.4005(9)	5.9(3) *
O13	0.090(1)	0.231(1)	0.091(1)	6.9(3) *
O21	0.371(1)	-0.2471(9)	0.2246(8)	4.9(2) *
O22	0.574(1)	0.058(1)	0.174(1)	7.1(3) *
O23	0.215(1)	-0.023(1)	0.007(1)	6.9(3) *
O31	0.104(1)	0.060(1)	0.5939(9)	5.5(3) *
O32	0.366(1)	-0.169(1)	0.5601(9)	5.7(3) *
O33	0.446(1)	0.206(1)	0.5760(9)	5.5(3) *
O41	-0.363(1)	-0.184(1)	0.2161(9)	5.5(3) *
O42	-0.475(1)	-0.459(1)	0.3716(9)	5.6(3) *
O43	-0.117(1)	- 0.3549(9)	0.4486(9)	5.2(2) *
O51	-0.182(1)	-0.861(1)	0.2080(9)	5.5(3) *
O52	0.024(1)	-0.571(1)	0.2933(9)	6.1(3) *
O53	-0.490(1)	- 0.6941(9)	0.2547(8)	5.3(2) *
O54	-0.203(1)	-0.628(1)	0.515(1)	6.4(3) *
O61	-0.133(1)	-0.724(1)	-0.024(1)	6.5(3) *
O62	-0.325(1)	-0.455(1)	-0.144(1)	7.0(3) *
O63	- 0.493(1)	-0.717(1)	0.007(1)	6.6(3) *
N1	0.0920(8)	-0.0912(8)	0.2649(7)	1.9(2) *
C1	0.187(1)	-0.009(1)	0.3029(9)	2.4(2) *
C2	0.003(1)	-0.069(1)	0.1963(9)	2.6(2) *
C3	- 0.079(1)	-0.145(1)	0.154(1)	2.8(2) *
C4	-0.073(1)	-0.252(1)	0.1798(9)	2.4(2) *
C5	0.016(1)	-0.275(1)	0.2521(9)	2.8(2) *
C6	0.099(1)	-0.193(1)	0.2953(9)	2.4(2) *
C7	-0.163(1)	-0.335(1)	0.126(1)	2.8(2) *
C8	-0.151(1)	-0.446(1)	0.129(1)	2.8(2) *
C11	0.064(1)	0.173(1)	0.369(1)	3.2(3) *
C12	0.268(1)	0.292(1)	0.361(1)	3.6(3) *
C13	0.130(1)	0.204(1)	0.174(1)	3.9(3) *
C21	0.357(1)	-0.157(1)	0.229(1)	3.3(3) *
C22	0.487(1)	0.032(1)	0.195(1)	4.6(3) *
C23	0.266(1)	-0.019(1)	0.090(1)	3.9(3) *
C31	0.173(1)	0.044(1)	0.534(1)	3.6(3) *
C32	0.335(1)	-0.097(1)	0.516(1)	2.9(2) *
C33	0.387(1)	0.134(1)	0.530(1)	3.1(3) *
C41	-0.335(1)	-0.270(1)	0.226(1)	3.4(3) *
C42	-0.402(1)	-0.442(1)	0.322(1)	4.1(3) *
C43	-0.180(1)	-0.371(1)	0.373(1)	3.2(3) *
C51	-0.203(1)	-0.776(1)	0.233(1)	4.2(3) *
C52	-0.075(1)	-0.590(1)	0.282(1)	3.6(3) *
C53	-0.397(1)	-0.669(1)	0.259(1)	3.8(3) *
C54	-0.216(1)	-0.627(1)	0.424(1)	3.9(3) *
C61	-0.188(1)	-0.661(1)	0.009(1)	3.8(3) *
C62	-0.311(1)	-0.494(1)	-0.063(1)	4.6(3) *
C63	-0.414(1)	-0.657(1)	0.031(1)	3.9(3) *

Starred atoms were refined isotropically.

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3)*[a2*B(1, 1)+b2*B(2, 2)+c2*B(3, 3)+ab(\cos \gamma)*B(1, 2)+ac(\cos \beta)*B(1, 3)+bc(\cos \alpha)*B(2, 3)]$,

Table 10 Atomic coordinates and isotropic displacement coefficients B_{eq} (Å²) for $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-C(O)CH_3)]$ (3)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Atom	x	У	z	B _{eq}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(1)	0.1986(1)	0.3174	0.19632(10)	2.97(2)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Os(2)	0.2413(1)	0.43151(6)	0.1105(1)	3.51(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(3)	-0.0410(1)	0.37725(6)	0.0600(1)	3.40(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(4)	0.3550(1)	0.11799(5)	0.57703(10)	3.14(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(5)	0.5878(1)	0.19983(6)	0.5773(1)	3.52(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Os(6)	0.2954(1)	0.2267	0.6879(1)	3.20(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O (1)	-0.064(3)	0.4995(10)	0.746(2)	6.6(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)	0.595(3)	0.069(1)	1.255(2)	6.6(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(11)	0.436(3)	0.3438(10)	0.403(2)	6.3(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(12)	0.359(3)	0.222(1)	0.068(2)	6.8(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(13)	-0.024(3)	0.246(1)	0.340(2)	7.2(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(21)	0.544(3)	0.468(1)	0.244(2)	7.8(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(22)	0.343(3)	0.444(1)	-0.153(3)	8.1(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(23)	0.113(3)	0.559(1)	0.113(3)	8.2(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(31)	0.029(3)	0.370(1)	-0.205(2)	7.2(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(32)	-0.225(3)	0.491(1)	0.034(3)	8.2(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(33)	-0.330(3)	0.313(1)	0.106(3)	9.3(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(41)	0.589(3)	0.028(1)	0.541(2)	6.4(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(42)	0.125(2)	0.0430(9)	0.689(2)	5.6(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(43)	0.249(3)	0.129(1)	0.310(2)	6.9(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(51)	0.870(3)	0.124(1)	0.576(3)	8.7(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(52)	0.589(3)	0.2203(10)	0.298(2)	6.1(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0(53)	0.772(4)	0.307(1)	0.668(3)	10.6(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(61)	0.093(3)	0.321(1)	0.551(2)	0.5(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(62)	0.448(3)	0.318(1)	0.85/(2)	7.3(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(03)	0.055(3)	0.190(1)	0.808(2)	7.2(0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	N(1) N(2)	0.015(2)	0.4109(8)	0.330(2)	2.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma(2)$	0.320(2)	0.1487(8) 0.200(1)	0.830(2) 0.222(2)	3.0(4) 2.1(5)
$\begin{array}{c} C(2) & -0.157(4) & 0.47(1) & 0.001(3) & 5.0(7) \\ C(3) & -0.318(4) & 0.461(1) & 0.716(3) & 4.7(7) \\ C(4) & 0.464(3) & 0.168(1) & 0.719(2) & 2.8(5) \\ C(5) & 0.678(4) & 0.097(1) & 1.197(3) & 5.0(7) \\ C(6) & 0.844(4) & 0.112(2) & 1.226(3) & 7.0(9) \\ C(11) & 0.343(3) & 0.333(1) & 0.325(3) & 4.5(6) \\ C(12) & 0.309(3) & 0.261(1) & 0.119(3) & 4.4(6) \\ C(13) & 0.061(3) & 0.277(1) & 0.290(3) & 4.5(6) \\ C(21) & 0.431(4) & 0.454(1) & 0.195(3) & 5.0(7) \\ C(22) & 0.317(3) & 0.441(1) & -0.051(3) & 4.3(6) \\ C(23) & 0.164(4) & 0.511(2) & 0.109(3) & 5.7(8) \\ C(31) & -0.005(4) & 0.372(1) & -0.104(3) & 5.1(7) \\ C(32) & -0.141(3) & 0.449(1) & 0.050(3) & 4.8(7) \\ C(33) & -0.219(4) & 0.339(2) & 0.093(3) & 6.1(8) \\ C(41) & 0.499(4) & 0.065(1) & 0.553(3) & 5.3(7) \\ C(42) & 0.207(3) & 0.0760(10) & 0.651(2) & 2.6(5) \\ C(43) & 0.290(3) & 0.123(1) & 0.413(3) & 4.5(6) \\ C(51) & 0.756(4) & 0.154(2) & 0.573(3) & 6.3(8) \\ C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(71) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.530(3) & 4.3(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(2)	-0.157(4)	0.399(1) 0.474(1)	0.222(2) 0.681(3)	5.1(3) 5.0(7)
$\begin{array}{c} C(4) & 0.464(3) & 0.168(1) & 0.719(2) & 2.8(5) \\ C(5) & 0.678(4) & 0.097(1) & 1.197(3) & 5.0(7) \\ C(6) & 0.844(4) & 0.112(2) & 1.226(3) & 7.0(9) \\ C(11) & 0.343(3) & 0.333(1) & 0.325(3) & 4.5(6) \\ C(12) & 0.309(3) & 0.261(1) & 0.119(3) & 4.4(6) \\ C(13) & 0.061(3) & 0.277(1) & 0.290(3) & 4.5(6) \\ C(21) & 0.431(4) & 0.454(1) & 0.195(3) & 5.0(7) \\ C(22) & 0.317(3) & 0.441(1) & -0.051(3) & 4.3(6) \\ C(23) & 0.164(4) & 0.511(2) & 0.109(3) & 5.7(8) \\ C(31) & -0.005(4) & 0.372(1) & -0.104(3) & 5.1(7) \\ C(32) & -0.141(3) & 0.449(1) & 0.050(3) & 4.8(7) \\ C(33) & -0.219(4) & 0.339(2) & 0.093(3) & 6.1(8) \\ C(41) & 0.499(4) & 0.065(1) & 0.553(3) & 5.3(7) \\ C(42) & 0.207(3) & 0.0760(10) & 0.651(2) & 2.6(5) \\ C(43) & 0.290(3) & 0.123(1) & 0.413(3) & 4.5(6) \\ C(51) & 0.756(4) & 0.154(2) & 0.573(3) & 6.3(8) \\ C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.359(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(2)	-0.318(4)	0.474(1) 0.461(1)	0.081(3) 0.716(3)	3.0(7)
$\begin{array}{c} C(5) & 0.678(4) & 0.097(1) & 1.197(3) & 5.0(7) \\ C(6) & 0.844(4) & 0.112(2) & 1.226(3) & 7.0(9) \\ C(11) & 0.343(3) & 0.333(1) & 0.325(3) & 4.5(6) \\ C(12) & 0.309(3) & 0.261(1) & 0.119(3) & 4.4(6) \\ C(13) & 0.061(3) & 0.277(1) & 0.290(3) & 4.5(6) \\ C(21) & 0.431(4) & 0.454(1) & 0.195(3) & 5.0(7) \\ C(22) & 0.317(3) & 0.441(1) & -0.051(3) & 4.3(6) \\ C(23) & 0.164(4) & 0.511(2) & 0.109(3) & 5.7(8) \\ C(31) & -0.005(4) & 0.372(1) & -0.104(3) & 5.1(7) \\ C(32) & -0.141(3) & 0.449(1) & 0.050(3) & 4.8(7) \\ C(33) & -0.219(4) & 0.339(2) & 0.093(3) & 6.1(8) \\ C(41) & 0.499(4) & 0.065(1) & 0.553(3) & 5.3(7) \\ C(42) & 0.207(3) & 0.0760(10) & 0.651(2) & 2.6(5) \\ C(43) & 0.290(3) & 0.123(1) & 0.413(3) & 4.5(6) \\ C(51) & 0.756(4) & 0.154(2) & 0.573(3) & 6.3(8) \\ C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.358(2) & 2.7(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(4)	0.510(4)	0.461(1) 0.168(1)	0.719(2)	2.8(5)
$\begin{array}{cccccc} C(6) & 0.84(4) & 0.112(2) & 1.226(3) & 7.0(9) \\ C(11) & 0.343(3) & 0.333(1) & 0.325(3) & 4.5(6) \\ C(12) & 0.309(3) & 0.261(1) & 0.119(3) & 4.4(6) \\ C(13) & 0.061(3) & 0.277(1) & 0.290(3) & 4.5(6) \\ C(21) & 0.431(4) & 0.454(1) & 0.195(3) & 5.0(7) \\ C(22) & 0.317(3) & 0.441(1) & -0.051(3) & 4.3(6) \\ C(23) & 0.164(4) & 0.511(2) & 0.109(3) & 5.7(8) \\ C(31) & -0.005(4) & 0.372(1) & -0.104(3) & 5.1(7) \\ C(32) & -0.141(3) & 0.449(1) & 0.050(3) & 4.8(7) \\ C(33) & -0.219(4) & 0.339(2) & 0.093(3) & 6.1(8) \\ C(41) & 0.499(4) & 0.065(1) & 0.553(3) & 5.3(7) \\ C(42) & 0.207(3) & 0.0760(10) & 0.651(2) & 2.6(5) \\ C(43) & 0.290(3) & 0.123(1) & 0.413(3) & 4.5(6) \\ C(51) & 0.756(4) & 0.154(2) & 0.573(3) & 6.3(8) \\ C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(5)	0.678(4)	0.097(1)	1.197(3)	5.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	0.844(4)	0.112(2)	1.226(3)	7.0(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	0.343(3)	0.333(1)	0.325(3)	4.5(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	0.309(3)	0.261(1)	0.119(3)	4.4(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(13)	0.061(3)	0.277(1)	0.290(3)	4.5(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	0.431(4)	0.454(1)	0.195(3)	5.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	0.317(3)	0.441(1)	-0.051(3)	4.3(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)	0.164(4)	0.511(2)	0.109(3)	5.7(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	-0.005(4)	0.372(1)	-0.104(3)	5.1(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	-0.141(3)	0.449(1)	0.050(3)	4.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	-0.219(4)	0.339(2)	0.093(3)	6.1(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	0.499(4)	0.065(1)	0.553(3)	5.3(7)
$\begin{array}{ccccc} C(43) & 0.290(3) & 0.123(1) & 0.413(3) & 4.5(6) \\ C(51) & 0.756(4) & 0.154(2) & 0.573(3) & 6.3(8) \\ C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(42)	0.207(3)	0.0760(10)	0.651(2)	2.6(5)
$\begin{array}{ccccc} C(51) & 0.756(4) & 0.154(2) & 0.573(3) & 6.3(8) \\ C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(43)	0.290(3)	0.123(1)	0.413(3)	4.5(6)
$\begin{array}{cccccc} C(52) & 0.587(4) & 0.216(1) & 0.403(3) & 5.5(7) \\ C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(51)	0.756(4)	0.154(2)	0.573(3)	6.3(8)
$\begin{array}{cccccc} C(53) & 0.714(6) & 0.259(2) & 0.630(5) & 11(1) \\ C(61) & 0.171(4) & 0.288(2) & 0.608(3) & 6.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.530(3) & 4.3(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(52)	0.587(4)	0.216(1)	0.403(3)	5.5(7)
$\begin{array}{cccccc} C(61) & 0.171(4) & 0.288(2) & 0.008(3) & 0.1(8) \\ C(62) & 0.389(4) & 0.286(1) & 0.788(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.530(3) & 4.3(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(53)	0.714(6)	0.259(2)	0.630(5)	$\Pi(1)$
$\begin{array}{cccccc} (C(2) & 0.389(4) & 0.286(1) & 0.786(3) & 5.5(7) \\ C(63) & 0.144(4) & 0.209(1) & 0.802(3) & 4.6(6) \\ C(71) & -0.136(3) & 0.405(1) & 0.369(2) & 3.2(5) \\ C(72) & -0.186(3) & 0.423(1) & 0.477(3) & 4.0(6) \\ C(73) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.423(3) & 3.7(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(01)	0.1/1(4)	0.288(2)	0.008(3)	0.1(8) 5.5(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(62)	0.389(4) 0.144(4)	0.280(1) 0.200(1)	0.788(3)	5.5(7) 4.6(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(03)	-0.136(3)	0.209(1)	0.802(3) 0.360(2)	4.0(0) 3.2(5)
$\begin{array}{cccccc} (12) & 0.100(3) & 0.420(1) & 0.477(3) & 4.000 \\ (273) & -0.099(3) & 0.4534(10) & 0.558(2) & 2.7(5) \\ (274) & 0.055(3) & 0.464(1) & 0.530(3) & 4.3(6) \\ (275) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ (281) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ (282) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ (283) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ (284) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ (285) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(72)	-0.186(3)	0.423(1)	0.309(2) 0.477(3)	4 0(6)
$\begin{array}{ccccccc} C(15) & 0.1057(10) & 0.1557(10) & 0.1557(2) & 2.1(5) \\ C(74) & 0.055(3) & 0.464(1) & 0.530(3) & 4.3(6) \\ C(75) & 0.107(3) & 0.446(1) & 0.423(3) & 3.7(6) \\ C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \\ \end{array}$	C(73)	-0.099(3)	0.723(1) 0.4534(10)	0.558(2)	2 7(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(74)	0.055(3)	0.464(1)	0.530(3)	4.3(6)
$\begin{array}{ccccc} C(81) & 0.443(3) & 0.107(1) & 0.902(2) & 3.4(5) \\ C(82) & 0.502(3) & 0.093(1) & 1.011(3) & 3.7(5) \\ C(83) & 0.628(3) & 0.116(1) & 1.068(3) & 3.8(5) \\ C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \end{array}$	C(75)	0.107(3)	0.446(1)	0.423(3)	3.7(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(81)	0.443(3)	0.107(1)	0.902(2)	3.4(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(82)	0.502(3)	0.093(1)	1.011(3)	3.7(5)
$\begin{array}{cccc} C(84) & 0.706(3) & 0.157(1) & 1.007(3) & 4.1(6) \\ C(85) & 0.651(3) & 0.174(1) & 0.894(2) & 3.2(5) \end{array}$	C(83)	0.628(3)	0.116(1)	1.068(3)	3.8(5)
C(85) 0.651(3) 0.174(1) 0.894(2) 3.2(5)	C(84)	0.706(3)	0.157(1)	1.007(3)	4.1(6)
	C(85)	0.651(3)	0.174(1)	0.894(2)	3.2(5)

methods. The synthesis of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1) was recently reported [3].

IR spectra were recorded on a BIO-RAD FTS-7 IR spectrometer using 0.5 mm solution cells. The ¹H NMR spectra were recorded on a JEOL GSX 270FT-NMR spectrometer using deuteriated solvents as lock and reference [SiMe₄($\delta = 0$)]. Mass spectra (FAB) were recorded on a Finnigan MAT 95 instrument. Electronic absorption spectra were obtained with a micro-processor-controlled Perkin Elmer UV/VIS spectrophotometer Lambda 3B, thermostatted by use of a Lauda circulating bath. Products were separated in air by thin-layer chromatography on plates coated with Merck Kieselgel 60 GF₂₅₄.

3.2. Synthesis of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-\mu-\eta^2-CH=CH)Os_3(\mu-H)(CO)_{10}]$ (2)

A slight excess of $[Os_3(CO)_{10}(NCMe)_2]$ (75 mg, 0.08 mmol) in CH_2Cl_2 (10 ml) was added to a solution of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-CH=CH_2)]$ (1) (50 mg, 0.05 mmol) in *n*-hexane (30 ml). The solution was refluxed at 60° for 8 h, at which point the colour had turned to dark purple. The solvent was then removed under vacuo, and the residue was subjected to preparative TLC with *n*-hexane/CH₂Cl₂ (85:15, v/v) as eluant. A small amount of 1 (8 mg, 0.008 mmol, 16%) was recovered from the second red band. No attempt was made to identify the first yellow band because of its impure character. Crystallisation of the product from the deep-purple band in *n*-hexane/CH₂Cl₂ produced air-stable, purple needles of 2 (32 mg, 0.018 mmol, 34%).

3.3. Synthesis of $[Os_3(\mu-H)_2(CO)_9(\mu_3-CNC_5H_4-C(O)CH_3)]$ (3)

To a solution of 1 (50 mg, 0.05 mmol) in dichloromethane (30 ml) were added, a slight excess of Wilkinson's catalyst (74 mg, 0.08 mmol) and traces of water (three drops). The mixture was stirred under reflux in air for 8 h. The solvent was removed under vacuo. Purification by TLC with *n*-hexane/CH₂Cl₂ (75:25, v/v) as eluant afforded a single major product. The first, red, band gave the starting material 1 (15 mg, 0.016 mmol, 30%) and the second, blue, band gave [Os₃(μ -H)₂(CO)₉(μ ₃-CNC₅H₄-C(O)CH₃)] (3) (15 mg, 0.016 mmol, 29%).

3.4. X-Ray Analyses of compounds 1-3

For structures 1 and 2, intensity data were collected on an Enraf-Nonius CAD4 diffractometer, while for structure 3, data were recorded on a Rigaku AFC7R diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å) in both cases. For all the structures, the intensity data were corrected for Lorentz polarisation effects and for absorption by the Ψ -scan method. The crystal data and data collection details for 1-3 are summarised in Table 7. The structures were solved by a combination of direct methods and Fourier difference techniques, and refined on F by full-matrix least-squares analysis (using the sop program for 1 and 2 [29]; TeXsan for 3 [30]) until convergence was reached. Positional disorder for C(8) was encountered in the case of 1. A two site model for C(8), with occupancy factor 0.5 for each, was used in the refinement to give a satisfactory result. The hydrogen atoms of the organic moieties were placed in their positions (C-H, 0.96 Å). The positions of the hydride atoms were estimated from potential energy calculations [9]. Final atomic coordinates for the three structures are presented in Tables 8-10. Tables of hydrogen atom coordinates and thermal parameters, and complete lists of bond distances and angles have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgements

We gratefully acknowledge financial support from the Hong Kong Research Grants Council and the University of Hong Kong. S.C. and W.-Y.W. thank the Croucher Foundation for financial support.

References

- [1] C.C. Yin and A.J. Deeming, J. Chem. Soc., Dalton Trans., (1975) 2091.
- [2] K. Burgess, Polyhedron, 3 (1984) 1183.
- [3] W.T. Wong, W.Y. Wong and C.W. Yip, to be submitted for publication.
- [4] J. Castells, M.A. Merino and M. Moreno-Manas, J. Chem. Soc., Chem. Commun., (1972) 709.
- [5] E. Pretsch, J. Seibi, W. Simon and T. Clerc, Tables of Spectral

Data for Structure Determination of Organic Compounds, 2nd Edn., 1989, C145.

- [6] F.A. Cotton, L. Kruczynski, B.L. Shapiro and L.F. Johnson, J. Am. Chem. Soc., (1972) 6191.
- [7] R.F. Alex and R.K. Pomeroy, Organometallics, 6 (1987) 2437.
- [8] B.F.G. Johnson, F.J. Lahoz, J. Lewis, N.D. Prior, P.R. Raithby and W.T. Wong, J. Chem. Soc., Dalton Trans., (1992) 1701.
- [9] A.G. Orpen, J. Chem. Soc., Dalton Trans., (1980) 2509.
- [10] L.J. Admiraal and G. Gafner, J. Chem. Soc., Chem. Commun., (1968) 1221.
- [11] S. Chan, W.Y. Wong and W.T. Wong, J. Organomet. Chem., 474 (1994) C30.
- [12] A.J. Deeming, S. Hasso and M. Underhill, J. Chem. Soc. Dalton Trans., (1975) 1614.
- [13] B.E. Mann, B.L. Shaw and N.I. Tucker, J. Chem. Soc., Chem. Commun., (1970) 1333.
- [14] R.B. King, P.M. Treichel and F.G.A. Stone, J. Am. Chem. Soc., 83 (1961) 3600.
- [15] A.J. Arce, R. Machado, C. Rivas, Y.D. Sanctis and A.J. Deeming, J. Organomet. Chem., 419 (1991) 63.
- [16] R.J. Goudsmit, B.F.G. Johnson, J. Lewis and P.R. Raithby, *Acta Cryst.*, B38 (1982) 2689.
- [17] B.F.G. Johnson, J. Lewis, A.G. Orpen, P.R. Raithby and K.D. Rouse, J. Chem. Soc., Dalton Trans., (1981) 788.
- [18] A.J. Deeming, M.S.B. Felix, D. Nuel, N.I. Powell, D.A. Tocher and K.I. Hardcastle, J. Organomet. Chem., 384 (1990) 181.
- [19] J.J. Guy, B.E. Reichert and G.M. Sheldrick, Acta Cryst., B32 (1976) 3319.
- [20] A.G. Orpen, D. Pippard and G.M. Sheldrick, Acta Cryst., B34 (1978) 2466.
- [21] D.A. Strickland and J.R. Shapley, J. Organomet. Chem., 401 (1991) 187.
- [22] C.E. Housecroft, personal communication.
- [23] E. Buncel and S. Rajagopal, Acc. Chem. Res., 23 (1990) 226.
- [24] F. Effenberger and F. Würthner, Angew. Chem. Int. Ed. Engl., 32 (1993) 719.
- [25] M.L.H. Green, S.R. Marder, M.E. Thompson, J.A. Bandy, D. Bloor, P.V. Kolinsky and R.J. Jones, *Nature (London)*, 330 (1987) 360.
- [26] P.D. Beer and H. Sikanyika, Polyhedron, 9 (1990) 1091.
- [27] J.B. Keister and T.L. Horling, Inorg. Chem., 19 (1980) 2304.
- [28] J.N. Nicholls and M.D. Vargas, in R.J. Angelici (ed.), Reagents for Transition Metal Complex and Organometallic Syntheses, Inorganic Syntheses, Vol. 28, Wiley, New York, 1990, p. 289.
- [29] SDP Structure Determination Package, Enraf-Nonius, Delft, 1985.
- [30] TeXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985 and 1992.